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S1 Visual representation of pseudo data representing priors for between-study
variance τ 2

We present three sets of artificial studies, which may serve as the three different inverse-gamma
distributions for τ 2 displayed in Figure S1(a). The intervention effect is highest in magnitude for
the studies representing the inverse-gamma(1,1) distribution with the greatest prior mean for τ 2

(Figure S1(b)). The inverse-gamma(1,1) distribution in Figure S1(a) has the greatest variance and
is represented by just two studies in Figure S1(b), compared with four studies for the inverse-
gamma(2,1) prior and six studies for the inverse-gamma(3,0.5) prior with the greatest precision.
The intervention effect is lowest in magnitude for the studies representing the inverse-gamma(3,0.5)
prior with the lowest mean.
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Figure S1: (a) Inverse-gamma(α, β) prior distributions for τ 2. (b) Sets of pseudo studies to represent
the inverse-gamma(α, β) priors for τ 2.
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S2 Computing code

S2.1 Approximate Bayesian meta-analysis using meta-regression and pseudo data

S2.1.1 R code

This R code produces the results from an approximate Bayesian meta-analysis using data augmen-
tation by maximum likelihood estimation, as described in Section 2.1. An inverse-gamma prior is
declared for the between-study variance τ 2. The metafor package [1] must be installed for this code
to work.

The function “dataaugmentation.rma” is called to produce the results, where dataaugmenta-
tion.rma is a function of four arguments. These four arguments are:

y: vector of length K with the observed intervention effects (in our case, log odds ratios).
v: vector of length K with the corresponding within-study variances.
shape: the shape parameter of the inverse-gamma prior for τ2 (default is 1.14).
scale: the scale parameter of the inverse-gamma prior for τ2 (default is 0.08).

The function returns a list containing the following components:

mu: the estimated summary intervention effect.
mu.int: the corresponding 95% credible interval for the estimated summary intervention effect.
tau2: the estimated between-study variance.
tau2.int: the corresponding 95% credible interval for the estimated between-study variance.

dataaugmentation.rma<-function(y,v,shape=1.14,scale=0.08){

K<-length(y)

# Set up "prior" studies

K0<-round(2*shape)

y.prior<-rep(sqrt(2*scale/K0),K0)

v.prior=rep(1/10^20,K0)

#Place observed and unobserved data in separate strata

Y<-c(y,y.prior)

Sigma2<-c(v,v.prior)

type<-c(rep(1,length(y)),rep(0,length(v.prior)))

# Perform Bayesian meta-analysis using meta-regression by REML estimation

RE.MA<-rma(Y, Sigma2,mods=~type-1,method="REML")

mu<-RE.MA$b[,1]

mu.int<-c(min(RE.MA$ci.lb,RE.MA$ci.ub),max(RE.MA$ci.lb,RE.MA$ci.ub))

tau2<-RE.MA$tau2

tau2.int<-c(min(confint.rma.uni(RE.MA)$random[,2][1],

confint.rma.uni(RE.MA)$random[,3][1]),

max(confint.rma.uni(RE.MA)$random[,2][1],

confint.rma.uni(RE.MA)$random[,3][1]))

output<-list(mu,mu.int,tau2,tau2.int)

names(output)<-c("mu","mu.int","tau2","tau2.int")
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class(output)<-"dataaugmentation.rma"

return(output) }

Running the code below in R [2] produces the results in Table 2 of Section 4 for re-analysing study
data from the published meta-analysis evaluating the effectiveness of fluoride for lower limb pain
(Example 1), using REML estimation by data augmentation.

dataaugmentation.rma(y=c(0.653926467406664, -0.287682072451781, 4.1461377316513,

2.40694510831829),v=c(0.203879598662207, 0.333333333333333, 2.09967998456912,

0.253068693693694),shape=1.45,scale=0.18)

S2.1.2 Stata code

For meta-analysts who prefer to use Stata [3], the code to follow will yield equivalent results. This
code makes use of the metareg command [4].

// declare an informative inverse-gamma(1.45,0.18) prior for the between-study variance tau2

*set mean and std dev of prior for 1/tau2

local shape 1.45

local scale 0.18

*derive the number of artificial studies and their effect

local K=round(2*‘shape’)

confirm integer number ‘K’

local y=sqrt(2*‘scale’/‘K’)

*input meta-analysis data, plue an additional row for the prior

clear

input type y v

1 0.653926467406664 0.203879598662207

1 -0.287682072451781 0.333333333333333

1 4.1461377316513 2.09967998456912

1 2.40694510831829 0.253068693693694

0 . .

end

*set up the artificial studies

replace y=‘y’ if type==0

replace v=1E-20 if type ==0

expand ‘K’ if type==0

gen s=sqrt(v)

*approximate Bayesian analysis

metareg y type, wsse(s) reml z noconst
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S2.2 WinBUGS code for implementing MCMC

The WinBUGS [5] code provided below produces the results in Table 2 of Section 4 for re-analysing
study data from Example 1 using MCMC.

model{

for(i in 1:K){

prec.y[i]<-1/v[i]

y[i]~dnorm(theta[i],prec.y[i])

theta[i]~dnorm(mu,invtausq)

}

mu~dnorm(0,0.000001)

invtausq~dgamma(shape,scale)

tausq<-1/invtausq

}

#Data for example 1

list(y=c(0.653926467406664, -0.287682072451781, 4.1461377316513, 2.40694510831829

),v=c(0.203879598662207, 0.333333333333333, 2.09967998456912, 0.253068693693694

),K=4,shape=1.45,scale=0.18)

S2.3 R code for implementing importance sampling

The R code to follow is a modified version of the code provided by by Turner et al [6]. The
code defines a R function “importance.rma” for performing a fully Bayesian meta-analysis with an
inverse-gamma prior for the between-study variance τ 2, using importance sampling techniques. The
code makes use of the Hmisc package [7], so this should be downloaded first. Also required is a
function that we have called “imp.weights” , in order to compute the importance weights w(µ, τ 2).

importance.rma<-function(y,v,sims,seed=1,lower=0.025,upper=0.975,scale=4,

shape_prior,scale_prior){

set.seed(seed)

#Compute parameters for the simple distribution that we want to sample from

#--------------------------------------------------------------------------

tau2_p<-1/(shape_prior/scale_prior)

re_ws<-1/(v+tau2_p)

v_p2<-scale/sum(re_ws)

mu_p<-sum(re_ws*y)/sum(re_ws)

#Draw mu and tau2 from the simpler distribution

#----------------------------------------------

mus<-rnorm(sims,mu_p,v_p2^0.5)

tau2s<-1/(rgamma(sims,shape_prior,scale_prior))

sims_mat<-matrix(nrow=sims,ncol=2) #Store simulations in a matrix

sims_mat[,1]<-mus

sims_mat[,2]<-tau2s

#Weight the simulated observations

#---------------------------------
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weights<-apply(sims_mat,1,FUN=imp_weights,y=y,v=v,mu_p=mu_p,v_p2=v_p2)

den<-sum(weights) #Compute posterior moments for mu, tau2

Emu<-sum(weights*mus)/den

Etau2<-sum(weights*tau2s)/den

Emu2<-sum(weights*mus^2)/den

Etau4<-sum(weights*tau2s^2)/den

sd_mu<-sqrt(Emu2-Emu^2) #Compute std dev for mu, tau2

sd_tau2<-sqrt(Etau4-Etau2^2)

mc_var_mu<-sims*var(weights*mus)/(den^2)

-2*sum(weights*mus)*sims*cov(weights*mus,weights)/(den^3)

+((sum(weights*mus))^2)*sims*var(weights)/(den^4)

mc_var_tau2<-sims*var(weights*tau2s)/(den^2)

-2*sum(weights*tau2s)*sims*cov(weights*tau2s,weights)/(den^3)

+((sum(weights*tau2s))^2)*sims*var(weights)/(den^4)

pr<-weights/den

mu_q<-as.numeric(wtd.quantile(mus,pr,normwt=TRUE,probs=c(lower,0.5,upper)))

tau2_q<-as.numeric(wtd.quantile(tau2s,pr,normwt=TRUE,probs=c(lower,0.5,upper)))

output<-list(Emu,sqrt(mc_var_mu),sd_mu,mu_q[2],c(mu_q[1],mu_q[3]),

Etau2,sqrt(mc_var_tau2),sd_tau2,tau2_q[2],c(tau2_q[1],tau2_q[3]))

names(output)<-c("posterior_mean_of_mu","mc_error_mu","sd_mu","median_mu","mu_int",

"posterior_mean_of_tau2","mc_error_tau2","sd_tau2","median_tau2","tau2_int")

class(output)<-"importance.rma"

return(output)

}

imp_weights<-function(x,y,v,mu_p,v_p2){

prod(dnorm(y,mean=x[1],sd=(v+x[2])^0.5))/(dnorm(x[1],mu_p,sqrt(v_p2)))

}

We assume that the study data from the meta-analysis are stored as length K vectors of observed
intervention effects (in our case, log odds ratios) and corresponding within-study variances. To
perform Bayesian meta-analysis with an inverse-gamma(1.45,0.18) prior for τ 2, with a sample of
1000000 simulations, we run the code below in R. This code returns the posterior means, medi-
ans, standard deviations and 95% credible intervals, along with the MC errors, for the summary
intervention effect µ and the between-study variance τ 2.

importance.rma(y,v,sims=1000000,shape_prior=1.45,scale_prior=0.18)
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S3 Models for heterogeneity

We used Bayesian hierarchical models to analyse study data from each binary outcome meta-analysis
in the data set, whilst investigating the influence of meta-analysis characteristics on the degree of
heterogeneity among results of included studies. Use raij to denote the number of events in treatment
arm a (a = C, T for Control and Treatment arm being compared) in study i of meta-analysis j, from
a total number of na

ij patients, each assumed to have probability πa
ij of having the event. Within

each meta-analysis j, a random-effects model with binomial within-study likelihoods was fitted to
binomial outcome data raij/n

a
ij from each study i (a = C, T for Control and Treatment arm being

compared):

rCij ∼ Binomial(πC
ij , n

C
ij)

rTij ∼ Binomial(πT
ij, n

T
ij).

logit(πC
ij) = αij − θij/2

logit(πT
ij) = αij + θij/2

θij ∼ N(µj, τ
2
j ).

where the baseline odds, αij, are fixed effects, and the treatment effects (log odds ratios θij have
normal random-effects distributions. In the defined model, µj corresponds to the combined inter-
vention effect for meta-analysis j, and τ 2j represents the underlying between-study heterogeneity.

Across meta-analyses, regression models were fitted to underlying values of between-study variance
τ 2j , assuming an inverse-gamma distribution. In the defined model, x1j, x2j are indicators for whether
the meta-analysis indexed j had an outcome which was all-cause mortality or semi-objective. Like-
wise, z1j, z2j are binary indicators for whether the intervention comparison was pharmacological
vs placebo/control or pharmacological vs pharmacological respectively. β1 and β2 are regression
coefficients which represent average differences between each outcome type and the reference group
of subjective outcomes, whereas the fixed effects γ1 and γ2 denote the average differences between
each intervention comparison type and the reference group of non-pharmacological intervention
comparisons. Additional fixed effects δ1, ..., δ10 were added to the regression models to investigate
the influence of medical specialities.

τ 2j ∼ Inverse-gamma(rxz, λj)

where

log(λj) = β0 + β1x1j + β2x2j + γ1z1j + γ2z2j + δ1a1j + ...+ δ10a10j.

All models were fitted using MCMC within the WinBUGS [5] software and results were based
on 50,000 iterations following a burn-in period of 10,000 iterations. This was sufficient to achieve
convergence. Convergence diagnostics were run on the 50,000 iterations after burn-in. We moni-
tored convergence using the Brooks-Gelman-Rubin statistic [9], as implemented in WinBUGS. For
a single MCMC chain, convergence was checked graphically via trace plots and autocorrelation
plots. Vague normal(0, 100) prior distributions were assigned to each summary effect µj and all
regression coefficients, as recommended by Spiegelhalter et al. [10]. For each pair-wise combination
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of outcome types u and types of intervention comparison v, we assigned the shape parameter rxz
an exp(0.001) prior distribution which is slowly decreasing on the positive real line [5]. We carried
out sensitivity analyses to investigate how the results depend on the choice of non-informative prior
distributions. The estimated parameters for each Bayesian hierarchical model using different priors
were very similar.

For each research setting defined by the type of outcome x and type of intervention comparison z,
we obtained a predictive distribution for heterogeneity τ 2new in a new meta-analysis j in that setting,
within the full Bayesian model. For example the predictive distribution for τ 2 in a new binary out-
come meta-analysis assessing a semi-objective outcome (x2new = 1), comparing a pharmacological
intervention against a placebo (z1new = 1) in the reference medical area was obtained by monitoring
the following:

τ 2new ∼ Inverse-gamma(r21, λnew)

log(λnew) = β0 + β2 + γ1.

In our initial analyses, we compared the fit of various models which differed according to the meta-
analysis characteristics that the shape and scale parameters of the inverse-gamma distribution were
allowed to depend on. The inclusion of indicators for medical area in the model for log(λj) led to
improvement in model fit based on deviance information criterion (DIC). However, the obtained
predictive distributions tended to be very similar across medical areas. For this reason, we report
a set of predictive distributions for τ 2 expected in research settings defined only by outcome type
and type of intervention comparison. These distributions were obtained by fixing each indicator for
medical area equal to the corresponding proportion of meta-analyses in the data. We consider it
undesirable to report more predictive distributions than necessary.

We used WinBUGS to obtain 50,000 samples from each posterior distribution of τ 2new after conver-
gence. To allow us to summarize the distributions easily, we report inverse-gamma distributions
fitted to each sample of values for τ 2new, using the R function fitdistr in library MASS [11]. The
predictive distributions provided are approximations of the predictive inverse-gamma distributions
obtained under the full Bayesian model within WinBUGS. We are content to use this procedure as
a pragmatic way to derive informative prior distributions for the between-study variance τ 2.
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S4 Simulation study design

Initially we conducted a simulation study with K = 5 studies. This represents the situation com-
monly found in meta-analysis where there are only a small number of studies [8] and Bayesian
methods are particularly beneficial. If instead there were many more studies available, then there
would be sufficient data, and conventional estimation of the random-effects model would lead to
similar inference as Bayesian estimation. The data were simulated using within-study variances
of σ2

1 = 0.009, σ2
2 = 0.046, σ2

3 = 0.122, σ2
4 = 0.265 and σ2

5 = 0.600 in the same way as Jackson et
al. [12]. These values correspond to the 0%, 25%, 50%, 75% and 100% quantiles of the scaled and
truncated chi-squared distribution used by Brockwell and Gordon [13] for generating within-study
variances. In order to cover a wide range of scenarios, we used five values of between-study variance
τ 2 = 0, 0.029, 0.069, 0.206, 1.302, since these values correspond to I2 = 0%, 30%, 50%, 75%, 95% [14].
For each of the five values of τ 2, we generated 20,000 data sets with true summary effect µ = 0. A
different random seed was used for each value of τ 2.

We carried out additional simulation studies, again using 20,000 simulated data sets for each sce-
nario, where different random seeds were used for each combination of K and τ 2. In these additional
studies, values of K = 10 and 20 were used. For simplicity, and because we are only interested in
the impact of increasing the number of studies on the performance of methods for Bayesian meta-
analysis, we used the same within-study variances as for the simulation study with K = 5 studies,
replicated twice for K = 10 and four times for K = 20 studies. We also used the same five values
of between-study variance τ 2.

The random-effects model was estimated for each simulated meta-analysis using Bayesian methods
by data augmentation and importance sampling with an empirically-based inverse-gamma(1.14, 0.08)
prior for the between-study variance τ 2. This prior has median 0.09 and 95% range (0.02, 1.79).
Importance sampling was recently proposed by Turner et al. [6], for the purpose of implementing
a log-normal prior for between-study variance τ 2 in a Bayesian meta-analysis. In order to make
direct comparison with our method for Bayesian meta-analysis by data augmentation, we adapted
the method to incorporate inverse-gamma priors for τ 2. In the main simulation study, it was compu-
tationally convenient to use importance sampling techniques as the gold standard approach rather
than MCMC methods, since importance sampling can easily be implemented in the same software
as the method by data augmentation. Importance sampling has yielded approximately equivalent
results to MCMC methods in example applications [6].

In Bayesian meta-analysis by data augmentation, we used K0 = 2 ≈ 2 × 1.14 artificial studies with
intervention effects y0 =

√
2 × 0.08/K0 = 0.28 to augment the observed study data using meta-

regression by ML and REML estimation. It was also desired to compare the Bayesian methods to
a commonly used frequentist method. Conventional estimation of the random-effects model was
carried out for each simulated meta-analysis using the DL procedure [15]. For each method, 95%
Wald-type intervals for estimators of µ were obtained using the model-based standard errors. All
necessary simulations were implemented using R [2], specifically the metafor package [1] was used
for DL estimation and Bayesian meta-analysis by data augmentation, and the Hmisc package [7]
was used for Bayesian meta-analysis by importance sampling (see S2 for details).

We assessed the suitability of our simulation studies as a means to justify use of data augmentation
as an alternative to standard MCMC methods. To date, conclusions that importance sampling
and MCMC methods lead to approximately equivalent meta-analysis results have been based upon
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applications of methods to examples. In order to provide more convincing evidence of the strong
agreement between results from importance sampling and MCMC, we re-analysed study data from
our simulation study with K = 5 studies under a fully Bayesian framework using MCMC within
WinBUGS. For purpose of this investigation, we used only the first 1000 simulated data sets for
each τ 2 value because MCMC is computationally expensive and all that is desired here is to check
the agreement of results based on importance sampling and MCMC.
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